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SUMMARY 
A fully discrete methodology is investigated from which two-level, explicit, arbitrary-order, conservative 
numerical schemes for a model parabolic equation can be derived. To illustrate this, fully discrete three-, 
five-, seven- and nine-point conservative numerical schemes are presented, revealing that a higher-order 
scheme has a better stability condition. A method from which high-order numerical schemes for a scalar 
advection4ilTusion equation can be developed is discussed. This method is based on high-order schemes 
of both the advection and diffusion equations. 
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1. INTRODUCTION 

An important research subject in computational fluid dynamics (CFD) concerns the development 
of high-order numerical schemes for direct simulation of viscous flows. Since second-order 
schemes in practice are inadequate for many applications, great efforts have been made towards 
developing high-order-accurate schemes in the past. There are many application areas for which 
such research is of vital importance. One example of considerable interest is the solution of 
problems which require longtime evolution. For this kind of problem low-order methods will 
produce unacceptable dispersive and diffusive errors in a very short time. Another example 
concerns direct numerical simulation of turbulent flows. Low-order methods contain large 
numerical diffusion and dispersion and are thus totally inaccurate for simulating turbulent 
structures, since large amounts of turbulent fluctuations associated with different scales of eddies 
are artificially dissipated. In large computational problems low-order methods would require 
vast amounts of computer memory (possibly not available with current computers) in order to 
attain a satisfactory degree of accuracy. A high-order method would attain the same accuracy 
with coarser meshes requiring less sophisticated hardware and making it possible to actually 
run the problem. 

Essentially there are two different techniques which can be used to construct high-order 
numerical schemes: semidiscrete and fully discrete methods. In the semidiscrete method (for 
definition see Reference 1) one divides the discretization process into two separate stages. In the 
first stage one discretizes in space only, leaving the problem continuous in time; in the second 
stage one has sets of ordinary differential equations (ODES) in time which can be discretized 
appropriately. Often this technique is called the method of lines. 

Today most high-order numerical schemes rely on the semidiscrete approach. One typical 
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example is the conventional implicit multistep scheme’ which is widely applied in CFD. 
However, because of the severe restrictions on high time levels, the highest-order method in 
practice is second-order, i.e. the two-step method. 

One approach to dealing with viscous flows is to use the convection-diffusion operator- 
splitting r n e t h ~ d , ~  which splits the Navier-Stokes equations into two parts, an inviscid part 
(Euler equations) and a viscous part (Stokes equations), and then solves the two parts sequentially 
by applying an optimum numerical scheme to each part. This approach avoids the homogeneous 
treatment of both advection and diffusion in the Navier-Stokes equations and reduces the task 
to developing high-order schemes for each individual part, which is much easier to deal with 
technically than the full advectiondiffusion equations. 

The model equation for studying the Stokes equations is a scalar parabolic equation. In this 
paper a fully discrete technique which has the important property of combining time and space 
discretization of a model parabolic equation in a single stage is investigated. By applying this 
technique, two-level, explicit, arbitrary-order numerical schemes for a scalar parabolic equation 
can be constructed. The resulting schemes are expressed in a conservative form, i.e. in terms of 
a diffusion numerical flux function, which can be readily combined with an advection numerical 
flux to form a high-order advection-diffusion scheme if necessary. 

The paper is organized as follows. Section 2 establishes a formula from which two-level, 
explicit, fully discrete, arbitrary-order numerical schemes can be derived. Section 3 applies the 
technique to construct some high-order, fully discrete, conservative numerical schemes and gives 
the stability condition for the schemes. Section 4 presents a way to construct high-order schemes 
for the advection-diffusion equation. Section 5 contains conclusions. 

2. FULLY DISCRETIZING A MODEL PARABOLIC EQUATION 

We consider the initial value problem (IVP) for a one-dimensional linear scalar model parabolic 
partial differential equation (PDE), namely the scalar diffusion equation in a conservative form 

u, - (vu,), = 0, 
u(x, 0) = uo(x). 

- co < x < co, t > 0, 

Here u(x, t) is the unknown function and v is a diffusion coefficient. 
We discretize the computational half-plane by choosing a uniform mesh with a mesh width 

h = Ax and a time step k = At and define the computational grid x j  = j h ,  t,, = nk. We use V; 
to denote the computed approximation to the exact solution u(xj ,  t,,) of equation (1). 

Theorem I 

The fully discrete formula from which a two-level, fully discrete, explicit, mth-order-accurate, 
finite difference method can be derived for the model parabolic equation u, - vu,, = 0 is defined 
as 

where r is the grid point number, p = 2m + 1 is the number of grid points used, m is the order 
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of accuracy in time and &a are constant coefficients determined by 

k ,  k z  0 
k: k: . .  . .  . .  
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where 

l o  
= l ~ n ! / ( n / 2 ) ! 1 c ~  ifn is an even number, 

with d = vk/h' a diffusion number. 

if n is an odd number, 

Proof: In order to prove the theorem, we first analyse the local truncation error of equation 
(1) by Taylor series expansion of both sides of the equation. This can be written as 

(4) 

where m is the order of accuracy of the scheme (1 < m < a), u,. = a"u/dt" and uf = d"u/dx". 
From equation (1) it is easy to obtain 

Substitution of equation ( 5 )  into equation (4) gives 

u,. = Puxa. ( 5 )  

+ O[(At)"' l ,  (AX)'"'+ '3. (6) 

Note here that the order of the truncation error in equation (6) is m + 1 in time and 2m + 1 in 
space, because At - Ax'. Obviously the relationship between m and p is 

p = 2 m +  1, (7) 

In order to achieve mth-order accuracy in time, it is sufficient to require that 

a = l  

Equation (9) can be rewritten as 
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Incorporating the left-hand side of (10) in terms of n and reorganizing it, equations (8) and (10) 
become 

2m - 

B O = l -  1 ' k a ,  
a 2  l , k a # O  

2m 

B , k ;  = 0 (n = 1,3 ,..., 2m - I), 
a =  I . k , # O  

n !  B k" - - -- dn12 (n = 2,4, .. . ,2m). 
2 m  

(n/2) ! 
k ,  a - 

a =  l . k , f O  

Equation ( 1  1) can be transformed into the alternative forms 

Bk,=o = 1 - Bk,, 

k , B k ,  + k2Bk2 + 
k:Bk, + kiBk2 + ... + k:,Bk, = 2d, 

a =  l . k , + O  

+ k2,Bk, = 0, 

or 

where 

. I  

2d O l  

if n is an odd number, to 
Y = t i n  !/(n/2) ! I P ~  if n is an even number, 

which is formula (3) and establishes the theorem. 

3. CONSERVATIVE HIGH-ORDER NUMERICAL SCHEMES 

In this section we use some examples to demonstrate how to apply the method presented 
previously to derive high-order, conservative numerical schemes 

k 
h u;+1 = u; - [ T ( U " ; j )  - T ( U " ; j  - l)], (14) 
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where T(U"; j )  is a diffusion numerical flux which satisfies the consistency condition 

q e ,  c, . . . , c) = j ( c )  = 0, 

where U is constant. 

3.1. Fully discrete three-point schemes 

second-order in space, i.e. order ( 1 , 2 ) .  
From equation (7) we know that the three-point schemes are first-order in time and 

3.1.1. Upwind-biased scheme. Let us denote the three-point centred scheme as UY+' = 
f ( U ! - ,  , U;- ,, Uy). Here k ,  = - 2 ,  k ,  = - 1 and k, = 0 in equation (12), which gives 

- 2 B - 2  - B-1 = 0, 4B-,  + B -  = 2d, B o =  l - B - z - B - 1 ,  

i.e. 

Bo = 1 + d,  B - 1  = -2d ,  B - ,  = d. (16) 

Therefore the numerical scheme is 

Uy" = (1 + d)U; - 2dU:- 1 + d U ; - , ,  (17) 

Applying the stability analysis method introduced in Reference 4, the amplification factor I. of 
the scheme is 

I = 1 + 4 d .  (18) 

For stability one requires 1,iI < 1, which is satisfied if 

- $ < d < O .  (19) 

However, it is physically meaningless for the diffusion number d to be negative. Obviously the 
one-side upwind scheme (17) is physically not right. Our numerical analysis of other upwind- 
biased schemes either gave the same conclusion or showed severe stability restraints. Therefore 
from now on we will not discuss the upwind-biased schemes. 

3.1.2. Centred scheme. We denote the scheme by U;+' = f ( U ; -  ,, U;, U;, ,). Here k, = - 1, 
k, = 0 and k, = 1 in equation (12), which gives 

- B -  1 + B1 = 0, B - ,  + B ,  = 2d, Bo = 1 - B - 1  - B1 

or 

Bo = 1 - 2d, B - ,  = d ,  B ,  = d.  

Note here that B -  , = B,. Actually this is a general law of parabolic numerical schemes which 
states that the mirror points of numerical schemes, such as pointsj - 1 a n d j  + 1 in this scheme, 
have identical coefficients. 

Therefore the centred numerical scheme is 
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Applying the method introduced in Reference 5, the numerical flux of the scheme is 

T(U”; j )  = F j  - F;+ (22) 

where Fq = PUJn is a local diffusion flux and P, which has the dimension of velocity, is called 
the ‘diffusive velocity’ and is defined by 

fl = v/h. (23) 

The amplification factor of the scheme is 

2 = 1 - 4d. (24) 

For stability one requires J A l  < 1, which is satisfied if 

O s d G f .  

3.2, Fully discrete five-point centred scheme 

The five-point schemes are second-order in time and fourth-order in space, i.e. order (2,4). 
Let us consider the scheme which is denoted as U ; + ’  = f(U;-,, U;- U;,  U ; ,  ,, U7+,). Here 

k, = -2, k ,  = - 1 ,  k ,  = 0, k, = - 1 and k ,  = - 2  in equation (12), which gives 

B, = 1 - B - 2  - B-1 - B ,  - B , ,  - 2 8 - 2  + B..1 + B ,  + 2Bz = 0, 

4B-2 + B-1 + B ,  + 482 = U, 

-8B-,  + B -  , + B ,  + 88, = 0, l6B-,  + B - ,  + B ,  + 16B2 = 12d2 

or 

B ,  = 1 + 3dZ - $d, B - , = B , = $ d - 2 d 2 ,  B - z  = B2 = fd2 - A d .  (26) 

Therefore the scheme is 

U ; + l  = (1 + 3d2 - zd)U; + ($d - 2d2)(U,”-1 + UJn+ 1) + (id2 - Ad) (U; - z  + U;+2).  (27) 

The numerical flux of the scheme is 

T ( U ” ; j )  = (id - +2)F;.1 + ($ - :d)FY + ($d - z)Fjd+l + (A - $d)Fq+z.  (28) 

The amplification factor of the scheme is 

A = 1 - 2($d - 4d2). 

Therefore the stability condition for 11.1 < 1 is 

O < d < + .  

Note that compared with the three-point centred scheme which ..as a stability condition 
0 < d < i, the five-point centred scheme has a better stability condition. 

3.3. Fully discrete seven-point centred scheme 

order (3,6). 
The accuracy with seven-point schemes is third-order in time and sixth-order in space i.e. 



NUMERICAL SCHEMES FOR A MODEL PARABOLIC EQUATION 1045 

By repeating the same procedure as before, the seven-point centred scheme is 

u;+1 = ( I  - I f d 3 + ? & - 4 9  md)U; + ( a d 3  - a d 2  + $d)(U;-, + U;+, )  

+ (d2 - d3 - &d)(U;-2 + UJ?+2)  + (id3 - Ad2 + &d)(U;-3 + U;+3).  (31) 

The numerical flux of the scheme is 

The amplification factor of this scheme is 

For stability one requires 111 < 1, which is satisfied if 

0 < d < 085. (34) 

Note that the stability condition of the scheme is again improved compared with the five-point 
centred scheme. 

3.4. Fully discrete nine-point central scheme 

The accuracy of this scheme is fourth-order in time and eighth-order in space i.e. order (4,8) 

U;  ' = (1 - 2'847222d + 5.6875008d' - 6.24999984d3 + 2*9166648d4)U; 

+ (1.6d - 4.066666656d2 + 483333324d3 - 2*33333184d4)(U;- 1 + U;+ 1) 

+ (1*408333332d2 - 0.2d - 2.16666667d' + 1.16666667d4)(Uj"- 2 + U7+J  

+ (0.025396824d - 0.2d2 + 0.5d3 - 0*33333216d4)(U;- + U;+  J 
+ (0.01453324d' - 0.00178572d - 0*04166664d3 + 0*04166568d4)(U;-4 + U;+4). (35) 

The numerical flux of the scheme is 

T(U";  j) = (0.01453324d - 0~00178572 - 0.04166664d2 + 0.04166568d3)F;- 

+ (002361 1104 - 0.18546676d + 0'45833336d2 - 0.29166648d3)Fq- 2 

+ (1.222866572 - 0.176388896 - 1.70833331d2 + 087500019d')F;- 1 

+ (1.42361 1104 - 2.843800084d + 3*12499993d2 - 1.45833165d3)F; 

- (1.42361 1104 - 2.843800084d + 3.12499993d2 - 1.45833165d3)F;+ 1 

- (1.222866572d - 0176388896 - 1.70833331d2 + 0.875CO019d3)F;+ 2 

- (0.02361 1104 - 0.18546676d + 0.45833336d2 - 029166648d3)F;+ 3 

- (0'01453324d - 000178572 - 0.04166664d2 + 0*04166568d3)Fq+4. (36) 

The amplification factor of the scheme is 

;I = 1 - 2(3*250794d - 8*533333d2 + 1066666692d3 - 5.33333304d4). (37) 
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The stability condition of the scheme is 

J.  SHI 

4. HIGH-ORDER SCHEMES FOR SCALAR ADVECTION-DIFFUSION EQUATION 

In Section 3 we presented some conservative high-order schemes for the model parabolic 
equation. In this section we discuss a way to construct conservative high-order schemes for a 
scalar advection-diffusion equation 

u, + (au - vu,), = 0, (39) 

where au - vu, is the physical advection-diffusion flux which is a combination of the advection 
flux and the diffusion flux. 

The numerical flux H(U"; j) which simulates the physical advection-diffusion flux can be easily 
defined by combining a numerical advection flux F( U"; j) and a diffusion flux T( U"; j ) ,  i.e. 

H( U"; j )  = F( U"; j )  + T( U"; j ) .  (40) 

Therefore the numerical scheme can be written as 

k 
h 

k 
h 

U;+l = U;  - [H(U";  ) - H(U";  j - I)] 

(41) = U; - - [F(U";  j )  - F(U"; j - 1) + T(U"; j )  - T(U"; j - l)]. 

Taking the three-point centred advection numerical flux of the Lax-Wendroff scheme, 

F(U"; j )  = ;(I + c)Fq + ~1 - c)Fq+ ,, (42) 

where c is the Courant number, FY = Re F j  = aU; is the local advection flux and Re = c/d = ah/v 
is the local cell Reynolds number, and the five-point centred diffusion numerical flux (28), for 
example, we have the following advection4iffusion numerical flux: 

This is a five-point, second-order (in time and space) scheme. By following this example, any 
high-order numerical scheme can be constructed for the scalar advection4iffusion equation. 

5. CONCLUSIONS 

An approach for constructing two-level, explicit, fully discrete, arbitrary-order, conservative 
numerical methods for a onedimensional scalar parabolic equation has been presented. To 
illustrate the technique, fully discrete three-, five-, seven- and nine-point conservative numerical 
schemes are given. One remarkable property of the parabolic numerical schemes is that a 
higher-order scheme has a better stability condition. 



NUMERICAL SCHEMES FOR A MODEL PARABOLIC EQUATION 1047 

Based on high-order schemes of both the advection and diffusion equations, a way to construct 
high-order schemes for a scalar advection-diffusion equation is discussed. For systems of 
advection4iffusion equations, by using the operator-splitting method, high-order numerical 
schemes for both hyperbolic and parabolic equations can be explicitly applied. 
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